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Abstract—A technique was developed for solving the mathematical model describing unsteady-state
diffusion in a Newtonian liquid in steady-state laminar flow in a circular tube. The process of interest in
this work was one in which the Péclét numbers were very high and axial diffusion effects could, therefore,
be neglected. The mathematical model describing this process was a partial differential equation with
three independent variables and its associated boundary conditions. The method of solution used the
Laplace transform, followed by either separation of variables or finite difference calculations, depending
on the magnitude of the parameters involved.

This method has the advantage that it eliminates the complex finite difference techniques and their
associated stability and convergence problems which must otherwise be employed for exact numerical
solutions of boundary value problems in three independent variables. The solution obtained in this work
showed excellent agreement with experimental data collected in the present work and in previous research,
This technique can be applied to other mathematical models of similar form describing transport problems
in unsteady-state laminar flow and should make exact numerical solutions to this class of problems more

easily obtainable.

NOMENCLATURE
dye concentration;
initial dye concentration;
diffusion coefficient ;
dimensionless concentration;
Laplace transform of G;
Péclét number;
tube radius;
radial distance from tube axis;
unit step function;
Laplace transform parameter;
elapsed time;
liquid velocity at tube axis;
axial distance from the interface.

letters
scale factor for Laplace transforms;
difference operator;
dimensionless axial distance from the
interface ;
dimensionless time ;
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g, dimensionless radial distance from tube
axis.

THe PROBLEM of diffusion in laminar flow
in tubes has received a considerable amount
of attention by many people in the last fifteen
years. The problem was first discussed by G. L
Taylor [22-24] iri terms of the dispersion of a
soluble material in a flowing solvent, Since
Taylor’s original work, the problem has been
examined in different ways by other investigators
[2-4,7,16] ;and the understanding of the physical
situation has been greatly increased. Of parti-
cular interest is a series of papers by Gill and
co-workers [1, 12, 13, 17, 18] who have ob-
tained solutions to the problem for a wide range
of Péclét numbers and values of dimensionless
time.

A practical exampie of diffusion and con-
vection in laminar flow in a circular tube was
discovered by Ferrell et al. [9-11] in the develop-
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ment of a technique for measuring velocity
profiles of liquids in laminar flow in circular
tubes. This technique involved displacing from
rest a liquid containing a small amount of
dissolved dye by the identical colorless liquid,
continuously monitoring the displacement of
the dyed liquid at a point downstream from the
initial interface, and calculating from this data
the velocity profiles. When the technique was
applied to Newtonian liquids of low viscosity
in laminar flow, it was discovered that the
measured profiles showed large deviations from
the theoretical laminar profile in the wall-
adjacent portion of the tube. This deviation of
the measured profiles was thought to be a
result of radial diffusion of the dye toward the
center of the tube causing it to be displaced
more rapidly.

The objective of the work reported here was
to verify radial diffusion as the source of error
in the dye displacement technique. This required
a knowledge of how the mean dye concentration
changed with time after the beginning of flow
in the tube. It was, therefore, necessary to derive,
solve and verify a mathematical model for the
particular case of laminar diffusion and con-
vection encountered in the dye displacement
technique. It was also an objective of this
work to develop a technique for solving the
mathematical model which eliminates the com-
plex finite-difference methods which would
otherwise be necessary for solving this three
independent variable model. Such a method
was employed by Gill et al. [1] in obtaining
solutions to a similar model and was reported
to involve trial and error selections of the finite
difference increments in order to determine
the convergence and stability of the solutions.

MATHEMATICAL MODEL
The mathematical model was derived by
simplifying the general diffusion equation for
the case of laminar flow in a circular tube and
adding the proper boundary conditions. It was
assumed in this derivation that the system was of
constant mass density, that the diffusion co-
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efficient was a function of temperature only,

thatdiffusionintheaxialdirection was negligible
compared with convection, that the system was
at constant temperature and pressure, and that
the fluid velocity followed the theoretical para-
bolic form for laminar flow. The mathematical
model in non-dimensional form is

%+%%g:4(1_52)%§+4gg (1)
GECO)=1 for (20 2)

G 0.0)=0 for © >0 (3)
G0,(,©) =0 4

G{1,{,©) =0, (5)

where the subscript ¢ indicates the partial
derivative with respect to &, and

¢=riR ©)

{ = 4zD/V,R? (7

© = 4Dt/R? (8)

G = G(£(,0) = C(, L, 0)/C, ©)

In these equations ¢ is the dimensionless
tube radius, { is the dimensioniess axial distance
from the interface, ® is the dimensionless time
and G is the dimensionless concentration. The
factors of four were included to facilitate the
solution.

The boundary conditions state in the order
of their listing that:

a. The tube is initially filled in the positive z
direction with a dye solution of uniform
concentration, C,,.

b. The dye at the interface, z = 0, is com-
pletely displaced at the beginning of the
flow.

¢. The concentration profile is symmetric
about the tube axis.

d. There is no transport of material through
the tube wall.
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SOLUTION OF SIMPLIFIED MODEL

The normalized model was first solved for
the special case of dye displacement by con-
vection only. This meant that the diffusion
terms on the left-hand side of equation (1)
were set equal to zero and the boundary con-
ditions given by equations (4) and (5) were
discarded. A solution in closed form was possible
in this case which is shown in equation (10)

G (. ®)=S[{-(1-¢&)e] (10)

where S[{ — (1 — £%)@] is the so-called unit
step function. The value of this function is
unity when the expression in the brackets is
positive, and it is zero when this expression is
negative,

It was found to be convenient to express this
solution in terms of the concentration measured
by the spectrophotometer. This is a mean
concentration based on the diameter of the
tube and defined by

GO = [GELO)de (1)

The subscript m’ is used to differentiate this
“linear” mean concentration from mean con-
centrations defined in the usual way. When
equation (10) was substituted into equation (11)
and the integration was performed the result was

G ((,®)=1 for ®<{ (12)
G O =1~ /1-00) for ®>{ (13)

This solution was called the “convection”
solution to denote the absence of diffusion,
Since (/O is equal to zV,/t, the experimental
data can always be compared with the con-
vection solution without prior knowledge of
the dye diffusion coefficient.

SOLUTION OF DIFFUSION-CONVECTION MODEL

The first step in the solution of the complete
diffusion—convection model was to take the
Laplace transform of the model with respect to
the dimensionless axial distance {. This variable

was selected for transformation because of the
zero initial condition given by equation (3).

The next step was to solve the transformed
model for desired values of s, the Laplace
transform parameter. At this point it should be
noted that for values of s less than 1000, the
transformed model could be solved by separa-
tion of variables. At higher values of s the large
magnitudes of the numerical quantities in the
separation of variables calculation made it
necessary to resort to finite difference techniques
for the solution. Complete details of the method
of solution may be found in [25].

A digital computer was used to perform the
numerical calculations required by the separa-
tion of variables and finite difference methods.
The results of these calculations were numerical
values of g,.{s, ®) at discrete values of ® for
the values of s required.

The final step in the solution of the model
was to take the inverse transform by means of
Salzer’s method [19-21]. This is a numerical
method for approximating inverse transforma-
tions which yields values of the inverse trans-
formations at desired values of {. In the present
case it was necessary to scale the transform by
employing the well-known theorem for Laplace
transforms [6] which states that if g(s, ©) is
the Laplace transform of G({, ®), then

L {aglos,®)} = G 5—',@. (14)

Here « is a scale factor which must be properly
selected so that the results of the inversion are
valid. Complete details of the numerical in-
version may also be found in [25].

The small numerical values of { for which
inverse transforms were required in this work
made the use of large scale factors, «, necessary.
Inverse transforms were calculated with « equal
to 100 and 1000. The latter value produced
results for values of { ranging from 10 x 1074
to 150 x 1073, while the former produced
results for (s ranging from 1-50 x 1072 to
2:0 x 1072, This meant that the transformed



874

model had to be solved at s = ak equal to
100,200, . . . 1000 for a equal to 100 and at s
equal to 1000, 2000, . . . 10000 for « equal to 1000.

The results of the inverse transformation were
numerical values of G,,({, ®) versus @ for discrete
values of {. These data were then plotted and
smooth curves drawn through them to produce
continuous solutions.

RESULTS

The comparison of the diffusion—convection
solution with the convection solution at
{ = 1:0 x 1073 is shown in Fig. 2. In this figure
the dimensionless mean concentration, G,({, ®),
is plotted as the ordinate and the dimensionless
time, ®, as the abscissa on logarithmic co-
ordinates. The concentration measurements in a
run always start when the value of ® becomes
equal to the value of {. This value of @ is the
time at which dye displacement begins at the
monitoring location. At the start of the run
the convection solution shows a rapid decrease

1-000
Solutions for { = 100 X 1072
C:. Convection solution
D-C. Diffusion—convection
solution
0100 |—
S
~
N c
W
S D-C
0010
0-001 l
1-0 10 100
@ x 10’

FiG. 1. Comparison of the diffusion-convection solution
with the convection solution for { = 1:00 x 1072,
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in concentration from the initial dimensionless
concentration of 140 as shown in Fig. 1. This
idealized solution then gradually becomes linear
with time witha slope ofminus one. The diffusion-
convection solution follows the convection
solution for the early part of the run. It then
rises slightly above the convection solution,
and finally, shows a large downward deviation
from it. Both of these deviations of the diffusion—
convection solution from the convectionsolution
result from the diffusion of the dye.

Figure 2 shows a comparison of the diffusion—
convection solution with some experimental
data on potassium permanganate in water.
The experimental value of { was calculated
using a value of the diffusion coefficient of
potassium permanganate in water which was
found in the literature [22]. It is obvious from
this figure and Fig. 1 that a mathematical model
including only convection does not represent
the physical process. The model must take
into account the diffusion effect as well.

1-000
0100}~
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~
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Data of Ferrell (1954 a)
o Run23 £ =0-206X107?
ORun 24 L =0-206X1072
— Solution for £=0-200X 1072
0001 |
1-0 10 100
@x10?®

F1G. 2. Comparison of theoretical solution for { = 0:200 x
10~2 with experimental data for potassium permanganate.
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At{ = 1-50 x 107 3it waspossibletocompare
the solutions obtained by the two different
methods using the two different values of «.
This comparison is shown in Fig. 3. Methods 1
and II refer to solutions of the transformed
model by separation of variables and finite
difference techniques, respectively. Since the
solutions shown in this figure result from
numerical methods and an approximate inver-
sion scheme, it was felt that the agreement of
these two solutions was excellent.

On the basis of results of the kind shown in
Figs. 2and 3, it wasconcluded that the theoretical
solutions were correct and that the mathe-
matical model was a valid description of the
physical process. The high values of the center-
line velocity, ¥, which were used in the experi-
mental runs along with the relatively large
tube diameter (0-50 in.) produced very high
values of the Péclét number, Np, = RVy/D. It
was, therefore, reasonable from the results of
previous work [ 1] to eliminate the axial diffusion

t-00C

Q00—
KE" Data of Ferrell and
% Richardson (1958)
. <Run 12C £=0148 X 10°?
& o Run 12D £=0-152 X 1072

0-010}— T Run15AL=0-148X 1072
-—Solution I-£=0150 X 1072
— Solution I~{ =0-150X 1072

0-001 |
10 © 100

@ x 0%

Fi1G. 3. Comparison of solutions by Method I and Method II
for{ = 0150 x 1072

term from the general diffusion equation in the
derivation of the mathematical model. The
assumption that the diffusion coefficient, D,
was a function of temperature only and not
dependent on concentration also was apparently
valid at the low dye concentrations employed
in view of the agreement between the theoretical
solution and the experimental data. The assump-
tion that the velocity profile followed the
theoretical parabolic form for laminar flow can
be justified from the results of an example
presented by Bird et al. [5] for laminar flow
starting from rest in a circular tube. These
results shown that the centerline velocity attains
95 per cent of its steady-state value in only
20 s for the present problem. The experimental
observations in the present work were all at
much greater times than 20 s. The process
could thus be described as unsteady state
convection and diffusion in a steady state
laminar flow. The assumption of constant mass
density was established by actual density

1-000
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~— Solution for {=0-365X107*
0-i00
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~
<
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F16. 4. Comparison of normalized solution and experi-
mental data for runs 221 and 251.
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measurements on pure water and the con-

centrated dye solution. This result also implies

that natural convection effects are negligible.
For comparison of the theoretical solutions

vith avynarimen 1 %
with experimental data, it was convenient o

normalize the graphical solutions by plotting
the abscissa as ©/(. The ratio ®/{ is equal to
tVy/z, all of the parameters of which are experi-
mentally measurable. This normalization of the
solutions produces curves which all start at the
same point, @/ = 1-0. Physically this point
represents the time at which the tip of the
parabolic profile of the displacing liquid reaches
the monitoring point and dye displacement
begins. Since the mean concentrations were
measured by a spectrophotometer and the
initial concentration within a given run was
known, all of the experimental data could be
plotted in this form. The best theoretical
solution representing the data could be then
drawn in on this plot as shown in Fig. 4. From
the value of { corresponding to this theoretical
solution, an approximate value of the dye
diffusion coefficient could be calculated. This
technique was not found to be a very accurate
method of determining diffusion coefficients,
however. Experimental values of G, greater
than 0-3 or 0-4 were difficult to obtain because
of the very rapid change of dye concentration
with time in this portion of the run.

CONCLUSIONS

A technique was developed for solving the
unsteady-state diffusion—convection equation in
cylindrical coordinates for the case of negligible
axial diffusion and the boundary conditions for
a solution being displaced from rest by a pure
solvent. Dye diffusion coefficients cannot be
reliably measured by comparing theoretical
solutions to this problem with experimental
data. The technique for solving the mathematical
model eliminated the use of complex finite-
difference techniques and can be utilized on

relatively modest sized computing equipment.
Since many other physical problems can be
represented by similar mathematical models,
it was concluded that the solution technique

Arn Ay A Yvaetr Tn R,

used here could be very valuable in theoretical
treatments of other engineering problems.
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DIFFUSION INSTATIONNAIRE EN PHASE LIQUIDE DANS UN ECOULEMENT
LAMINAIRE DANS UN TUBE CIRCULAIRE

Résumé—Une technique de résolution a été élaborée pour le modéle mathématique décrivant la diffusion
instationnaire dans un liquide newtonien en écoulement laminaire permanent dans un tube circulaire.
Le processus intéressant dans ce travail était celui pour lequel les nombres de Péclét étaient trés élevés
et ol les effets de la diffusion axiale pouvaient donc étre négligés. Le modéle mathématique décrivant ce
processus était une équation aux dérivées partielles avec trois variables indépendantes et leurs conditions
aux limites associées. La méthode de résolution employait la transformée de Laplace, suivie, soit d’une
séparation de variables, soit de calculs de différences finies, selon la grandeur des paramétres en cause.
Cette méthode a I’avantage qu’elle élimine les techniques complexes de différences finies et leurs problémes
associés de stabilité et de convergence qui doivent autrement étre employées pour les solutions numériques
exactes de problémes de valeurs aux limites pour les trois variables indépendantes. La solution obtenue
dans ce travail montrait un excellent accord avec les résultats expérimentaux dans le travail actuel et dans
les recherches antérieures. Cette technique peut étre appliquée & d’autres mode¢les mathématiques de
formes semblable décrivant les problémes de transport dans ’écoulement laminaire en régime transitoire
et rendraient plus facile obtention des solutions numériques exactes de cette classe de probfémes.

INSTATIONARE FLUSSIGKEITSDIFFUSION BEI LAMINARER ROHRSTROMUNG

Zusammenfassung—Es wurde eine Technik entwickelt, ein mathematisches Modell zu 16sen, das die
instationdre Diffusion in einer Newtonschen Fliissigkeit bei stationdrer laminarer Stromung im runden
Rohr beschreibt. Da bei dem in dieser Arbeit interessierenden Prozess die Péclétzahlen sehr gross waren,
konnten axiale Diffusionseffekte vernachlassigt werden. Das mathematische Modell, das diesen Prozess
beschreibt, war eine partielle Differentialgleichung mit drei unabhéngigen Variablen und den zugehérigen
Randbedingungen. Zur Lésung wurde zunichst eine Laplace-Transformation durchgefiihrt, die weitere
Losung erfolgte, abhingig von der Grosse der vorkommenden Parameter, durch Trennung der Variablen
oder durch Differenzenverfahren.

Diese Methode hat den Vorteil, dass man damit komplexe Differenzenverfahren und die damit ver-
bundenen Stabilitits- und Konvergenzprobleme umgehen kann, die man sonst zur exakten numerischen
Losung von Grenzwertproblemen mit drei unabhéngigen Veranderlichen benétigt. Die in dieser Arbeit
erhaltene Losung zeigt hervorragende Ubereinstimmung mit experimentellen Werten, die bei gegen-
wirtigen Arbeiten und fritheren Forschungen zusammengetragen wurden. Diese Methode kann auf
andere mathematische Modelle dhnlicher Form angewandt werden, die Transportprobleme in instationarer
laminarer Strémung beschreiben. Exakte numerische Losungen dieser Art von Problemen lassen sich

dadurch leichter ermitteln.

HECTAOUMOHAPHAA JUOOY3UA HUJKOCTU TP JAMNHAPHOM
TEYEHUM B KPYTJION TPYEE

Anpnoranua—PaccmarpuBaeTcA pelleHMe MaTeMaTHYeCKOM MOJIeIM, ONKCHBaWIE! HeCTaluo-
HapHyio auddysnio B HbIOTOHOBCKOMK KUTKOCTH NPHU CTALHMOHAPHOM JAMHHAPHOM TEYEHUH B
Kpyrioit TpyGe. B mHTepecyolleM HAc ciy4ae 3HauyeHus kpurepua [lewse Onum BechbMa
GONbIIEMK, a TI0ITOMY BIMAHMEM akxchajbHOK AnPdysmnm Moo Ghno npeneGpeus.
MaremaTnieckana MOfeNb, ONMCHBAOIIAA RaHHHI Npouecc—auddepennmanbroe ypaBHenue
B YACTHHX MPOU3BOJHEIX C TpeMfA He33BUCHMHIMM IEPEMEHHEHIMH M CBASAHHEIMM C HUMU
FPaHMYHHMU yCjIoBHAMU, JIJIA peuleHHsA HCHOJNB30BaJOCh npeoGpasoBanue Jlamsaca, a
3aTeM pasfeleHHe NePeMeHHBIX MJIM BHIYMCIEHMA B KOHEYHBIX PA3HOCTAX B 3aBUCHMOCTH OT
BEJMYHMHBL HCIIOJIb3YEMbIX TAPaAMETPOB.

JlaHHBI MeTON MMeeT TO MPeUMYINECTBO, YTO OH MCKJIIOYAET CIOMHYI0 TEXHUKY pacyeTa B
KOHEYHBIX PABHOCTAX M CBABAHHLIC C Hel MPOGIEMEl yCTONUMBOCTH M CXOLUMOCTH, KOTOPHE B
IPOTABHOM CITy4ae HEOGXORUMO MCIONB30BATE JJIA NOJLyYeHUA TOYHEIX YMCICHHBIX pelieHmit
KpaeBRIX 3afjay ¢ TPEMA HE3aBUCHMBIMM IepeMeHHEMHU. Pelenue, moayvyenHoe B maHHOM
pafoTe, MOKAa3al0 NPEKPACHOE COIJIACOBAHME C OKCICPUMEHTAILHEMM AAaHHHMH, yIOMS-
HYTHMH B Hacroamie# pabore m B mpeAAymuMX ucciaegoBanusx. Takolt MeTom pacuera
MOKHO TPUMEHUTH K JPYCMM QHAJOTHYHHM MAaTeMATHYECKHM MOMEJAM, OMNUCHIBAIOIINM
niepedoc NpM CTAIMOHADHOM JIAMMHADHOM TEYEHHM, YTO JIaeT BO3MOMKHOCTL GOJIee JErKo

NOJYYHTE YNCJIEHHOEe PELIeHHe TAKOTO Kiacca 3a7ad.
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