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Ah&a&-A technique was developed for solving the mathematical model describing unsteady-state 
diffusion in a Newtonian liquid in steady-state laminar flow in a circular tube. The process of interest in 
this work was one in which the P&W numbers were very high and axial diffusion effects could, therefore, 
be neglected. The mathematical model describing this process was a partial differential equation with 
three independent variables and its associated boundary conditions. The method of solution used the 
Lapiace transform, followed by either separation of variables or finite difference calculations, depending 
on the magnitude of the parameters involved. 

This method has the advantage that it eliminates the complex finite difference techniques and their 
associated stability and convergence problems which must otherwise be employed for exact numerical 
solutions of boundary value problems in three independent variables. The solution obtained in this work 
showed excellent agreement with experimental data collected in the present work and in previous research. 
This technique can be applied to other mathematical models of similar form describing transport problems 
in unsteady-state laminar flow and should make exact numerical solutions to this class of problems more 

easily obtainable. 

NOMKNCLATIJRK 51 dimensionless radial distance from tube 
c, dye concentration ; axis. 
co, initial dye concentration ; 

4 diITusion coefficient ; THE PROBLEM of diffusion in laminar flow 
G, dimensionless concentration ; in tubes has received a considerable amount 
St Laplace transform of G ; of attention by many people in the last fifteen 
N Fe P&&t number ; years. The problem was first discussed by G. I. 
R, tube radius ; Taylor [22-24-J in terms of the dispersion of a 

:, 
radial distance from tube axis ; soluble material in a Sowing solvent, Since 
unit step function ; Taylor’s original work, the problem has been 

s, Laplace transform parameter ; examined in different ways by other investigators 
t, elapsed time ; [2-4,7,163 ;andtheunderstandingofthephysical 
v,, liquid velocity at tube axis ; situation has been greatly increased. Of parti- 
z, axial distance from the interface. cular interest is a series of papers by Gill and 

co-workers [l, 12, 13, 17, 18] who have ob- 
Greek letters tained solutions to the problem for a wide range 

2, 
scale factor for Lapface transforms ; of Pellet numbers and values of dimensionless 
diEerence operator ; time. 

5, dimensionless axial distance from the A practical example of diffusion and con- 
interface ; vection in laminar flow in a circular tube was 

0, dimensionless time ; discovered byFerrel1 et al. [9--l l] in the develop- 
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ment of a technique for measuring velocity 
profiles of liquids in laminar flow in circular 
tubes. This technique involved displacing from 
rest a liquid containing a small amount of 
dissolved dye by the identical colorless liquid, 
continuously monitoring the displacement of 
the dyed liquid at a point downstream from the 
initial interface, and calculating from this data 
the velocity profiles. When the technique was 
applied to Newtonian liquids of low viscosity 
in laminar flow, it was discovered that the 
measured profiles showed large deviations from 
the theoretical laminar profile in the wall- 
adjacent portion of the tube. This deviation of 
the measured profiles was thought to be a 
result of radial diffusion of the dye toward the 
center of the tube causing it to be displaced 
more rapidly. 

efficient was a function of temperature only, 
that diffusion in theaxialdirection was negligible 

compared with convection, that the system was 
at constant temperature and pressure, and that 
the fluid velocity followed the theoretical para- 
bolic form for laminar flow. The mathematical 
model in non-dimensional form is 

The objective of the work reported here was 
to verify radial diffusion as the source of error 
in the dye displacement technique. This required 
a knowledge of how the mean dye concentration 
changed with time after the beginning of flow 
in the tube. It was, therefore, necessary to derive, 
solve and verify a mathematical model for the 
particular case of laminar diffusion and con- 
vection encountered in the dye displacement 
technique. It was also an objective of this 
work to develop a technique for solving the 
mathematical model which eliminates the com- 
plex finite-difference methods which would 
otherwise be necessary for solving this three 
independent variable model. Such a method 
was employed by Gill et al. [l] in obtaining 
solutions to a similar model and was reported 
to involve trial and error selections of the Iinite 
difference increments in order to determine 
the convergence and stability of the solutions. 

where the subscript t indicates the partial 
derivative with respect to c, and 

In these equations ( is the dimensionless 
tube radius, c is the dimensionless axial distance 
from the interface, 0 is the dimensionless time 
and G is the dimensionless concentration. The 
factors of four were included to facilitate the 
solution. 

The boundary conditions state in the order 
of their listing that : 

a. 

MATHEMATICAL MODEL b. 
The mathematical model was derived by 

simplifying the general diffusion equation for 
the case of laminar flow in a circular tube and 
adding the proper boundary conditions. It was 
assumed in this derivation that the system was of 
constant mass density, that the diffusion co- 

C. 

d. 

$ + ;I zz 4(1 - C2)$ + 4G 
ao (1) 

G(tJ, <. 0) = 1 for ; 2 0 (21 

G(L 0.0) = 0 for 0 > 0 (3) 

G,(O, i, 01 = 0 (41 

G,(l, i, 01 = 0, (5) 

< = r/R (6) 

i = 4zD/VoR2 (7) 

0 = 4Dt/R2 (8) 

G = (35, i, 0) = CC<, i, WC,. (9) 

The tube is initially filled in the positive z 
direction with a dye solution of uniform 
concentration, C,. 
The dye at the interface, z = 0, is com- 
pletely displaced at the beginning of the 
flow. 
The concentration profile is symmetric 
about the tube axis. 
There is no transport of material through 
the tube wall. 



UNSTEADY-STATE LIQUID DIFFUSION 873 

SOLUTION OF SCUD MODEL 

The normalized model was first solved for 
the special case of dye displacement by con- 
vection only. This meant that the diffusion 
terms on the left-hand side of equation (1) 
were set equal to zero and the boundary con- 
ditions given by equations (4) and (5) were 
discarded. A solution in closed form was possible 
in this case which is shown in equation (10) 

was selected for transfo~ation because of the 
zero initial condition given by equation (3). 

Gi<, 590) = S[5 - (I - r2) @I (IO) 

where $5 - (1 - c”) O] is the so-called unit 
step function. The value of this function is 
unity when the expression in the brackets is 
positive, and it is zero when this expression is 
negative. 

The next step was to solve the transformed 
model for desired values of s, the Laplace 
transform parameter. At this point it should be 
noted that for values of s less than 1000, the 
transformed model could be solved by separa- 
tion of variables. At higher values of s the large 
magnitudes of the numerical quantities in the 
separation of variables calculation made it 
necessary to resort to finite difference techniques 
for the solution. Complete details of the method 
of solution may be found in [25]. 

It was found to be convenient to express this 
solution in terms of the concentration measured 
by the spectrophotometer. This is a mean 
concentration based on the diameter of the 
tube and defined by 

A digital computer was used to perform the 
numerical calculations required by the separa- 
tion of variables and finite difference methods. 
The results of these calculations were numerical 
values of ~Js, 0) at discrete values of 0 for 
the values of s required. 

G,, (c, 0) = f c(& I, 0) d5. 
0 

(II) 

The subscript m’ is used to differentiate this 
“linear” mean concentration from mean con- 
centrations defined in the usual way. When 
equation (lo) was substituted into equation (11) 
and the integration was performed the result was 

The fmal step in the solution of the model 
was to take the inverse transform by means of 
Salzer’s method [19-211. This is a numerical 
method for approximating inverse transforma- 
tions which yields values of the inverse trans- 
formations at desired values of 5, In the present 
case it was necessary to scale the transform by 
employing the well-known theorem for Laplace 
transforms [6] which states that if &, 0) is 
the Laplace transform of G([, O), then 

G,,&, @) = 1 for 0 < 5 (12) 

G,.(c, 0) = 1 - ,/(l - c/O) for 0 > [. (13) 

L- ’ (ag(as, 0)) = G k, 0. (14) 

This solution was called the “convection” 
solution to denote the absence of diffusion. 
Since c/O is equal to zVe/t, the experimental 
data can always be compared with the con- 
vection solution without prior knowledge of 
the dye diffusion coefficient, 

Here a is a scale factor which must be properly 
selected so that the results of the inversion are 
valid. Complete details of the numerical in- 
version may also be found in [25]. 

SOLUTION OF DlFFUSION-CONVEC’MON MODEL 

The first step in the solution of the complete 
diffusion+onvection model was to take the 
Laplace transform of the model with respect to 
the dimensionless axial distance t. This variable 

The small numerical values of [ for which 
inverse ~~sfo~s were required in this work 
made the use of large scale factors, a, necessary. 
Inverse transforms were calculated with a equal 
to 100 and 1000. The latter value produced 
results for values of 5 ranging from i-0 x 10e4 
to 150 x 10m3, while the former produced 
results for 5’s ranging from 1.50 x 10e3 to 

__ 2.0 x 10m2. This meant that the transformed 
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model had to be solved at s = ak equal to 
100,200, . . 1000 for a equal to 100 and at s 
equal to 1000,2000,. . . 10000 for a equal to 1000. 

The results of the inverse transformation were 
numericalvaluesof G&c, O)versus 0 for discrete 
values of i. These data were then plotted and 
smooth curves drawn through them to produce 
continuous solutions. 

RESULTS 

The comparison of the diffusion-convection 
solution with the convection solution at 
[ = 1.0 x lo- 3 is shown in Fig. 2. In this figure 
the dimensionless mean concentration, G,& O), 
is plotted as the ordinate and the dimensionless 
time, 0, as the abscissa on logarithmic co- 
ordinates. The concentration measurements in a 
run always start when the value of 0 becomes 
equal to the value of c. This value of 0 is the 
time at which dye displacement begins at the 
monitoring location. At the start of the run 
the convection solution shows a rapid decrease 

Solutions for 5 = IO0 X 10m3 

C Convection solution 

D-C Diffusion-convection 

\ 

lO( 

FIG. 1. Comparison of the diffusion- convection solution 
with the convection solution for [ = 100 x lo-? 
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in concentration from the initial dimensionless 
concentration of 1.0 as shown in Fig. 1. This 
idealized solution then gradually becomes linear 
with time withaslope ofminus one. The diffusion- 
convection solution follows the convection 
solution for the early part of the run. It then 
rises slightly above the convection solution, 
and finally, shows a large downward deviation 
from it. Both of these deviations of the diffusion- 
convection solution from the convection solution 
result from the diffusion of the dye. 

Figure 2 shows a comparison of the diffusion- 
convection solution with some experimental 
data on potassium permanganate in water. 
The experimental value of [ was calculated 
using a value of the diffusion coefficient of 
potassium permanganate in water which was 
found in the literature [22]. It is obvious from 
this figure and Fig. 1 that a mathematical model 
including only convection does not represent 
the physical process. The model must take 
into account the diffusion effect as well. 

Data of Ferret1 (19540) 

o Run 23 5 =0 206X IO-’ 

q Run 24 5 =0.206XlO-’ 

- Solution for 5 =O-200 X IO-’ 

FIG. 2. Comparison of theoretical solution for [ = @200 x 
lo-* with experimental data for potassium permanganate 
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At< = 1.50 x 10-3itwaspossibletocompare 
the solutions obtained by the two different 
methods using the two different values of a. 
This compa~~n is shown in Fig. 3. Methods I 
and II refer to solutions of the transformed 
model by separation of variables and finite 
difference techniques, respectively. Since the 
solutions shown in this figure result from 
numerical methods and an approx~ate inver- 
sion scheme, it was felt that the agreement of 
these two solutions was excellent. 

On the basis of results of the kind shown in 
Figs. 2 and 3, it was concluded that the theoretical 
solutions were correct and that the mathe- 
matical model was a valid description of the 
physical process. The high values of the center- 
line velocity, V,, which were used in the experi- 
mental runs along with the relatively large 
tube diameter (050 in.) produced very high 
values of the P&let number, N,, = RV$l. It 
was, therefore, reasonable from the results of 
previous work [l] to eliminate the axial diffusion 

Data of Ferreil and 

Richardson (1958 

*Run 12C 5 =O-148 X IO-’ 

0 Run 120 c=O.J52 X IO-’ 

.D Run 15A<=O~l48X IO- 

---SolutionI-~=0~150XlO-” 

-Solutian~-~=O~150X10~z 

FIG. 3. Comparison of solutions by Method I and Method II 
for b = O-150 x 10e2 
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term from the general diffusion equation in the 
derivation of the mathematical model. The 
assumption that the diffusion coefficient, D, 
was a function of temperature only and not 
dependent on concentration also was apparently 
valid at the low dye concentrations employed 
in view of the agreement between the theoretical 
solution and the experimental data. The assump- 
tion that the velocity profile followed the 
theoretical parabolic form for laminar flow can 
be justified from the results of an example 
presented by Bird et al. [5] for laminar flow 
starting from rest in a circular tube. These 
results shown that the centerline velocity attains 
95 per cent of its steady-state value in only 
20 s for the present problem. The experimental 
obse~ations in the present work were all at 
much greater times than 20 s. The process 
could thus be described as unsteady state 
convection and diffusion in a steady state 
laminar flow. The assumption of constant mass 
density was established by actual density 

000 

100 

,010 

001 
1.0 IO I 

FIG. 4. Comparison of normalized solution and experi- 
mental data for runs 221 and 251. 
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measurements on pure water and the con- 
centrated dye solution. This result also implies 
that natural convection effects are negligible. 

For comparison of the theoretical solutions 
with experimental data, it was convenient to 
normalize the graphical solutions by plotting 
the abscissa as O/c. The ratio O/c is equal to 
tT/,/z, all of the parameters of which are experi- 
mentally measurable. This normalization of the 
solutions produces curves which all start at the 
same point, O/C = 1,O. Physically this point 
represents the time at which the tip of the 
parabolic profile of the displacing liquid reaches 
the monitoring point and dye displacement 
begins. Since the mean concentrations were 
measured by a spectrophotometer and the 
initial concentration within a given run was 
known, all of the experimental da‘ta could be 
plotted in this form. The best theoretical 
solution representing the data could be then 
drawn in on this plot as shown in Fig. 4. From 
the value of ( corresponding to this theoretical 
solution, an approximate value of the dye 
diffusion coefficient could be calculated. This 
technique was not found to be a very accurate 
method of determining diffusion coefficients, 
however. Experimental values of G,, greater 
than 0.3 or 0.4 were difficult to obtain because 
of the very rapid change of dye concentration 
with time in this portion of the run. 

CONCLUSrONS 

A technique was developed for solving the 
unsteady-state diffusion-convection equation in 
cylindrical coordinates for the case of negligible 
axial diffusion and the boundary conditions for 
a solution being displaced from rest by a pure 
solvent. Dye diffusion coefficients cannot be 
reliably measured by comparing theoretical 
solutions to this problem with experimental 
data. The technique for solving the mathematical 
model eliminated the use of complex finite- 
difference techniques and can be utilized on 

relatively modest sized computing equipment. 
Since many other physical problems can be 
represented by similar mathematical models, 
it was concluded that the solution technique 
used here could be very valuable in theoretical 
treatments of other engineering problems. 
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DIFFUSION INSTATIONNAIRE EN PHASE LIQUIDE DANS UN fic0ULEMENT 
LAMINAIRE DANS UN TUBE CIRCULAIRE 

RCumC-Une technique de resolution a W dlabor&s pour le mod&le mathematique dCrivant la diffusion 
instationnaire dam un liquide newtonien en ecoulement laminaire permanent dam un tube circulaire. 
Le processus interessant dans ce travail etait celui pour lequel les nombres de P&let btaient tr&s &eves 
et 06 les effets de la diffusion axiale pouvaient done Btre ngliges. Le modble matheruatique d&crivant ce 
processus etait une equation aux d&v&m partielles avec trois variables independantes et leurs conditions 
aux limites associees. La methode de resolution employait la transform&s de Laplace, suivie, soit d’une 
separation de variables, soit de calculs de differences finieq selon la grandeur des parametres en cause. 

Cette methode al’avantage qu’elle elimine les techniques complexes de differences finies et leurs problbmes 
associC de stabilim et de convergence qui doivent autrement &tre employees pour les solutions numeriques 
exactes de problemes de valeurs aux limites pour les trois variables independantes La solution obtenue 
dans ce travail montrait un excellent accord avec les resultats experimentaux dans le travail actuel et dans 
les recherches anterieures. Cette technique peut Btre appliqued a d’autres mod&s mathematiques de 
formes semblable d&crivant les problemes de transport dans l’ecoulement laminaire en regime transitoire 

et rendraient plus facile l’obtention des solutions numeriques exactes de cette classe de problkmes. 

INSTATIONjlRE FLUSSIGKEITSDIFFUSION BE1 LAMINARER ROHRSTROMUNG 

Zusammenfassung-Es wurde eine Technik entwickelt, ein mathematisches Model1 zu l&en, das die 
instationiue Diffusion in einer Newtons&en Fliissigkeit bei station&r laminarer Striimung im runden 
Rohr beschreibt. Da bei dem in dieser Arbeit interessierenden Prozess die P&clCtzahlen sehr gross waren, 
konnten axiale Diffusionseffekte vemachliissigt werden. Das mathematische Modell, das diesen Prozess 
beschreibt, war eine partielle Differentialgleichung mit drei unabhimgigen Variablen und den zugehorigen 
Randbedingungen. Zur Liisung wurde zungchst eine Laplace-Transformation durchgeftihrt, die weitere 
L&sung erfolgte, abh8ngig von der G&se der vorkommenden Parameter, durch Trennung der Variablen 
oder durch Differenzenverfahren. 

Diem. Methode hat den Vorteil, dass man damit komplexe Differenzenverfahren und die damit ver- 
bundenen Stabilitits- und Konvergenzprobleme umgehen kann, die man sonst zur exakten numerischen 
Liisung von Grenzwertproblemen mit drei unabhiingigen Veri4nderlichen ben6tigt. Die in dieser Arbeit 
erhaltene Liisung zeigt hervorragende Dbereinstimmung mit experimentellen Werten, die bei gegen- 
wibtigen Arbe’iten und frtiheren Forschungen zusammengetragen wurden. Diese Methode kann auf 
andere mathematische Modelle iihnlicher Form angewandt werden, die Transportprobleme in instation&rer 
laminarer Striimung beschreiben. Exakte numerische Liisungen dieser Art von Problemen lassen sich 

dadurch leichter ermitteln. 

HECTAHHOHAPHAH JHI@@Y3HR XHflHOCTM IIPH HAMMHAPHOM 
TEYEHHR B HPYI’JIOH TPYEE 

AHHOTaqnsr-PaCCMaTpasaeTcRperueHneMaTeMaTnYeCKOiMOAenM,OntlCnBarolrletHeCTa~aO- 

HapHyIO ~EI@$yESlIO B HbIOTOHOBCKOti HCWAKOCTIl IIpll CTa4ROHapHOM JIaMAHapHOM TeYeHBIl B 

KpyrJIOfi Tpy6e. B MHTepeCyIOIqeM HaC CJIyYae 3Ha'leHHfI KpllTepEiR neKne 6brn14 BeCbMa 
6OonbrrruM&%, a n0aT0~y BJlHRHHeM aKCMaJIbHOZt fllU#+y3MH MOHUIO 6b1no npeHe6peqb. 

MaTeMaTwIecKaR Moaenb, onticnsamqan AaHHbItf npoqecc-gw$@epeHqnanbHoe ypaBHeHi4e 

B YaCTHbIX npOH3BOaHbIX C TpeMR He3aBI4CHMbIMB nepeMeHHbIMM Ii CBR3aHHbIMl.l C HIlMll 

rpaKwrHbIMn YCJIOBH~~MH. &IH peureaufi wnonb30Banocb npeo6pa30naHKe JIannaca, a 

3aTeM pa3AeneHtie nepeMeHHMX KJIEI BbI'iI4CJIeHHR B KOHeYHbIX pa3HOCTHX B 3aBBCHMOCTH OT 

BeJIMWZHbI HCnOJIb3yeMbIX napaMeTpOB. 

AaHHbIti MeTOn HMeeT TO npeMMyIIJeCTB0, qT0 OH MCKJIIOqaeT CJIOxtHylo TeXHIlKy paWeTa B 

KOHeYHbIXpa3HOCTRX H CBR3aHHbIeC Het npo6neMbIyCTO&iHBOCTEi I4 CXOJ(IJMOCTEi,KOTOpbIe B 

npOTFiBHOM CJIyYae He06xo~kiMo IlCnOJlbaOBaTb ,l(JlFI nOJlyqeHHR TOYHblX YIICJIeHHblX peUIeHU# 

KpaeBbIX 3aJ(a=l C TpeMH He3aBHCHMblMM nepeMeHHEJMH. Pemeune, nonyseHHoe B AaHHOi 
pa6ore, nOKEl3aJIO npeKpaCHOe COrJIaCOBaHMe C 3KCnepMMeHTaJlbHblMH AaHHbIMEl, ynOMfi- 

H~T~IMH B HaCTOXwefi pa6oTe M B npegbIAyIq&tx MCCne~OBaHAHX. TaKot MeTon pacseTa 

MORCHO npUMeHIlTb K fipyr"M aHaJIOrWfHblM MaTeMaTH=IeCKHM MOAeJlRM, OnIU%IBaIO~HM 

nepesOC IIpH CTaJQfOHapHOM JlaMIlHapHOM Te=teHBH, qT0 AaeT B03MOEWOCTb 6onee JrerKO 

nonysaTb wwjIeKHoe peIlreKtie TaKoro Knacca 3aAas. 


